Things You Need to Know or Be Able to Do with the Periodic Table by Now!

- 1. Who developed the periodic table and how was/is it organized
 - a) Mendeleev
 - Organized by atomic mass and properties Almost right, not quite
 Mosely
 - 1. Organized by atomic # (number of protons) The one we use today!
- 2. Groups versus Periods
 - a) Groups/Families 1. Vertical
 - L. Vertical
 - 2. Everything in the same vertical group has same number of valence e- and will have similar behaviors
 - b) Periods
 - 1. Horizontal
 - 2. Everything in same period has same number of energy levels
- 3. What are the three classes of elements?
 - a) Metal
 - b) Non-metal
 - c) Metalloid/Semi-metal
- 4. Identify what class an element belongs to
- 5. What are the names of the groups?
 - a) Alkali
 - b) Alkaline
 - c) Transition
 - d) Other metals
 - e) Metalloid/Semi-metal
 - f) Non-metals
 - g) Halogens
 - h) Noble Gases
 - i) Rare Earth
- 6. Identify which group name an element belongs to.
- 7. Know the properties of metals, non-metals, metalloids
 - a) Metals
 - 1. Ductile
 - 2. Malleable
 - 3. Shiny
 - 4. Mostly solids at room temperature
 - 5. Good conductor of electricity/heat
 - 6. Mostly empty valence shells
 - 7. Lose electrons to make positively charged ions called cations
 - b) Non-metals
 - 1. Not ductile
 - 2. Not malleable
 - 3. Not shiny
 - 4. Some solids but also some gases as room temperature
 - 5. Bad conductor
 - 6. Mostly full valence shells
 - 7. Gain electrons to make negatively charged ions called anions

Things You Need to Know or Be Able to Do with the Periodic Table by Now!

- $1. \quad \mbox{Who developed the periodic table and how was/is it organized}$
 - a) Mendeleev
 - 1. Organized by atomic mass and properties Almost right, not quite
 - b) Mosely
 - 1. Organized by atomic # (number of protons) The one we use today!
- 2. Groups versus Periods
 - a) Groups/Families
 - 1. Vertical
 - 2. Everything in the same vertical group has same number of valence e- and will have similar behaviors
 - b) Periods
 - 1. Horizontal
 - 2. Everything in same period has same number of energy levels
- 3. What are the three classes of elements?
 - a) Metal
 - b) Non-metal
 - c) Metalloid/Semi-metal
- 4. Identify what class an element belongs to
- 5. What are the names of the groups?
 - a) Alkali
 - b) Alkaline
 - c) Transition
 - d) Other metals
 - e) Metalloid/Semi-metal
 - f) Non-metals
 - g) Halogens
 - h) Noble Gases
 - i) Rare Earth
- 6. Identify which group name an element belongs to.
- 7. Know the properties of metals, non-metals, metalloids
 - a) Metals
 - 1. Ductile
 - 2. Malleable
 - 3. Shiny
 - 4. Mostly solids at room temperature
 - 5. Good conductor of electricity/heat
 - 6. Mostly empty valence shells
 - 7. Lose electrons to make positively charged ions called cations
 - b) Non-metals
 - 1. Not ductile
 - 2. Not malleable
 - 3. Not shiny
 - 4. Some solids but also some gases as room temperature
 - 5. Bad conductor
 - 6. Mostly full valence shells
 - 7. Gain electrons to make negatively charged ions called anions

- c) Metalloids/Semimetals
 - 1. Properties are somewhere in between a metal and a non-metal
 - 2. Depends on which specific element you are talking about
 - 3. About half full valence shell
- 4. Can make cations and anions depending on the situation
- 8. Know how many valence e-elements make in the s and p block based on group #
 - a) 1A has 1 valence electron
 - b) 2A has 2 valence electrons
 - c) 3A has 3 valence electrons
 - d) 4A has 4
 - e) 5A has 5
 - f) 6A has 6
 - g) 7A has 7
 - h) 8A has 8
 - i) d block and f block are too weird, you would have to be told how many
- 9. Know what charge the elements like to make based on the group they belong to
 - a) 1A makes +1
 - b) 2A makes +2
 - c) 3A makes +3
 - d) 4A makes +4 or -4
 - e) 5A makes -3
 - f) 6A makes -2
 - g) 7A makes -1
 - h) 8A makes no charge
- 10. Don't forget how to:
 - a) Find the number of protons
 - 1. Same as the atomic number
 - 2. Tells you what the name is
 - b) Find the number of electrons
 - 1. If it is as neutral atom then it is the same as the # of protons
 - 2. If it is a positive charge then take away that # of e from normal #
 - 3. If it is a negative charge then add that # of e- to the normal #
 - c) Find the mass number
 - 1. Protons + neutrons = mass number
 - d) Find the number of neutrons
 - 1. Mass number protons = neutrons
 - e) Find the average mass and the mass number of the most common isotope
 - 1. Average mass is the one written on the periodic table that takes into account all isotopes that exist
 - 2. The mass number of the most common isotope is the periodic table average mass rounded to the nearest whole number
 - f) Use the periodic table to write electron configurations
 - 1. Read top to bottom, left to write
 - 2. List the following:
 - 1. Energy level (1-7)
 - 2. Orbital block (s,p,d,f)
 - 3. Number of electrons in that block (as an exponent)
- 11. Anything else I forgot to mention here ha! ©

- c) Metalloids/Semimetals
 - 1. Properties are somewhere in between a metal and a non-metal
 - 2. Depends on which specific element you are talking about
 - 3. About half full valence shell
 - 4. Can make cations and anions depending on the situation
- 8. Know how many valence e-elements make in the s and p block based on group #
 - a) 1A has 1 valence electron
 - b) 2A has 2 valence electrons
 - c) 3A has 3 valence electrons
 - d) 4A has 4
 - e) 5A has 5
 - f) 6A has 6
 - g) 7A has 7
 - h) 8A has 8
 - i) d block and f block are too weird, you would have to be told how many
- 9. Know what charge the elements like to make based on the group they belong to
 - a) 1A makes +1
 - b) 2A makes +2
 - c) 3A makes +3
 - d) 4A makes +4 or -4
 - e) 5A makes -3
 - f) 6A makes -2
 - g) 7A makes -1
 - h) 8A makes no charge
- 10. Don't forget how to:
 - a) Find the number of protons
 - 1. Same as the atomic number
 - 2. Tells you what the name is
 - b) Find the number of electrons
 - 1. If it is as neutral atom then it is the same as the # of protons
 - 2. If it is a positive charge then take away that # of e from normal #
 - 3. If it is a negative charge then add that # of e- to the normal #
 - c) Find the mass number
 - 1. Protons + neutrons = mass number
 - d) Find the number of neutrons
 - 1. Mass number protons = neutrons
 - e) Find the average mass and the mass number of the most common isotope
 - 1. Average mass is the one written on the periodic table that takes into account all isotopes that exist
 - 2. The mass number of the most common isotope is the periodic table average mass rounded to the nearest whole number
 - f) Use the periodic table to write electron configurations
 - 1. Read top to bottom, left to write
 - 2. List the following:
 - 1. Energy level (1-7)
 - 2. Orbital block (s,p,d,f)
 - 3. Number of electrons in that block (as an exponent)
- 11. Anything else I forgot to mention here ha! $\textcircled{\odot}$